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i. Unsteady motion in a gravity force field is considered for a layer of a homogene- 
ous imcompressible ideal fluid of variable depth caused by an initial perturbation of the 
free boundary. The pattern of the motion is described completely by the velocity potential 
T (x, y, t) which satisfies the following relationshipsi n a linear formulation 

A T -~ 0 in Q, Ttt 2c Ty ~ 0 (y = O, x ~  R1), 

Ty+h:~Tx=O (y=--h{x), x ~ R ~ ) ,  T ' O, Tt = - - / ( x )  

(u=O, t=O). 

(1.1) 

The y axis in a Cartesian (x, y) coordinate system is directed opposite to the free-fall 
direction. The relationships (i.I) are written in dimensionless variables, where the length 
and velocity scales are selected so that the Froude number of the problem and the fluid 
depth at x = 0 equal one. At the initial time (t = 0) the free surface of the fluid is 
deflected from its equilibrium position. The equations y = f(x), y = -h(x), x e R I describe 
the initial position of the free boundary and the shape of the pond bottom, respectively, 
[h(x) > 0]. 

Under the assumption of a smooth change in the pond depth, i.e., ~ = max [hxl ~ 1 

the fundamental solution of the formulated problem is constructed and investigated prelim- 
inarily in [i]. The purpose of this paper is to illustrate the solution obtained by numeri- 
cal computations and to investigate the nature of the influence of different bottom rough- 
nesses on the behavior of the free surface. An analysis of the vertical displacements of 
the free surface q(x, t) that are determined from the relationship q = - Tt(x, 0, t) is 
of main interest. For simplicity, evenness of the function f(x) is assumed. 

In the case of a level bottom (h ~ i), the formula describing the evolution of the 
free boundary 

~o (x, t) = ~ F (v) cos ~x cos ~ (v) t dv ( 1 . 2 )  
0 

i s  w e l l  known. For  waves b e i n g  p r o p a g a t e d  t o  t h e  r i g h t  [ t  ~ ~, x / t  = 0 ( 1 ) ,  x > O] f o r  
l a r g e  t i m e s  t h e  f o l l o w i n g  a s y m p t o t i c  i s  v a l i d :  

no(X, t) = F(a) (2=t l~"(a) l ) -~ /~  sin[Q(a)t "4- ax -{- ~/4] -4- O(t-1), (1.3) 

which is obtained by using the method of stationary phase. Here a = ~(x/t) is the solution 
of the equation ~'(~) = -x/t. The asymptotic (1.3) is not uniform; it describes the surface 
wave pattern far from the bow wave front [i], i.e., does not even yield information about 
the free surface shape for x i t, t m 1 for 0 < x < t. 

If the pond depth varies slowly (E ~ i), then to O(a ~/2) accuracy we have [I] 

ll(X, t) = 2e(=)Co(a, i )  ch[qh(x) l  sin O(a, X), ( 1 . 4 )  

where t h e  f u n c t i o n s  q,  8, C O depend on t h e  p a r a m e t e r s  a ,  X (a  < O, X > O) and a r e  d e t e r m i n e d  
as  t h e  s o l u t i o n s  o f  t h e  s y s t e m  o f  s i x  f i r s t - o r d e r  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  
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dx dC o dq q2h' (~) dO = 2 fF (a) - -  qS (qh), "d-f = - -  S (qh), d)~ 
d~ ch 2qh(x)' dL - - ~ - -  

= - -  E (~, ~) Co, dq~ c ~ 2 q  h ~h'x  'x = [2q~h" + ~ ~ - -  2qh'  th qh (q~h + qh ,~)], 

dx~ S '  S (qh) 
d~ (qh) (hqa + qh'x~), S (~) ---- th  ~ + ~ S~ . . . . .  + h th qh, ( 1 . 5 )  ~--~, 4~ (~) 

2 h ' 

E (~, a) = q~ [S~S (qh) - -  h] - -  qh' + ~ S~, qx ~ q~%.~ + q:o~x, 

~,x = %~' (a)/D, ax  = - -  ~2 (a)/D, D = %~' (~) x~ - -  x~Q (~), t = 2%Q (~). 

Let us note that the corresponding system was written down in [i] with respect to the f's!ow" 
variables ex, st. The amplitude function C o becomes infinitely large as i § 0; consequent- 
ly, the numerical solution of the system (1.5) is started conveniently for a certain small 
value of I = ~0 > 0 by using the solution (1.5) for a level bottom as initial conditions: 

q -~ ~z, 0 = %o [2f~(r162 - -  ~S(r162 + ~/4, x = --LoS(s) ,  
F(a)  ( 1 . 6 )  

= , q~ = t,  x~ = -  ;~oS'(~). 

S u b s t i t u t i o n  o f  Eq.  ( 1 . 5 )  i n t o  Eq.  ( 1 . 4 )  r e s u l t s  i n  Eq.  ( 1 . 3 ) .  N u m e r i c a l  i n t e g r a t i o n  o f  
t h e  s y s t e m  ( 1 . 5 )  w i t h  t h e  i n i t i a l  c o n d i t i o n s  ( 1 . 5 )  i s  p e r f o r m e d  f o r  d i f f e r e n t  a ( a  < 0 ) .  
The f u n c t i o n  x f  = x ( t )  o b t a i n e d  a s  u + - 0  d e t e r m i n e s  t h e  b o u n d a r y  o f  t h e  wave  p e r t u r b a t i o n  
f r o n t  b e i n g  p r o p a g a t e d  t o  t h e  r i g h t .  

2. The plane Cauchy-Poisson problem for a pond with a rough bottom is investigated 
in [2] under the assumption of small roughnesses. The solution is obtained in the form 
of the sum 

= ~o(x, t) + ~h(X, t), 
where Do is the solution (1.2) for a level bottom and 

2 ~ kF (k) dk pZ (k, p) [cos e (k) t -- cos Q (p) t] dp 
rh - -  ~ .J ch--k ch p [~2 (p) _ ~2 (k)] 

0 0 

(Z(k ,  p)  = Re [ipe ~px K(p ,  k) ], ( 2 . 1 )  

i " K ( p , k ) =  h l ( x ) e - ~ W : s i n k x d x ,  h l ( x  ) ---- I - - h ( x ) ) .  

The necessary condition for applicability of this approximation is integrability of the 
function lh1(x)l, which is known to be satisfied for localized bottom roughness. 

Comparison of the numerical computations obtained in the small-roughness approximation 
and in the smoothly-varying bottom approximation is of interest. The case is examined when 
the shape of the initial perturbation of the free boundary is described by the function 

/ (X) = ae -d2", ( 2 . 2  ) 

and  t h e  b o t t o m  r e l i e f  by  t h e  f u n c t i o n  

tb cos (n (x - xo)/2xx), I x - -  X 0 ] < X l ;  

h~ (x) = (0, I x - -  x o I> x .  

Let us note that in the small roughness approximation the ratio AD = Dz/b is independ- 
ent of b. The dependences AD(x, t) are represented in Fig. 1 for different b, here d = 3, 
x o = 7, x~ = 3. The solution (2.1) is shown by the solid line, the curves I-4 correspond 
to the smooth roughness approximation for b = -0~ -0.1, 0.1, 0.2. This approximation 
does not describe the reflected waves, meaning AD -- 0 to the left of the roughness (Fig. 
la, x = 3). The small roughness approximation describes reflected waves but their amplitude 
is negligible in the case under consideration. Both approximations are in satisfactory 
agreement above the roughness apex for x = 7 (Fig. ib) and behind it for x = ii (Fig. Ic). 
As should have been expected, the agreement is improved as Ib[ diminishes. 

3. The asymptotic (1.4) is not valid near the bow wave front [i], namely, C0(~, l) § 
as ~ + -0. To refine the shape of the free boundary in the neighborhood of the front, 

a method proposed by Whitham is used in [i]. However, the composite asymptotic expansion 

391 



'7/a a 

0~] ~ _̂  b 

-o, z4 

-0,3-i - 

Fig. i F i g .  2 

obtained here (for ~ § 0) at moderate times differs noticeably from the exact solution. 
The asymptotic formulas for N(x, t) as t + ~, x/t = O(i), are uniformly suitable in the 
spatial variable x and convenient for numerical computations and can be obtained by using a 
generalized stationary phase method [3]. In contrast to the usual stationary phase method, 
it provides the possibility for merging the stationary phase points. Firstly, it is neces- 
sary to construct a uniform asymptotic W0(x, t) in the variable x that is defined by Eq. 
(1.2) as t + ~. Let us rewrite Eq. (1.2) in the form 

i l i F(v)e"(~(~)+~~ l F (v )  e ~ (%(~) -~~  d~ + % (z ,  t) = 

where ~ l ( v )  = ~  s g n v ,  o = x / t .  For  waves b e i n g  p r o p a g a t e d  t o  t h e  r i g h t  (x > O) t h e  
second  i n t e g r a l  i s  o f  t h e  o r d e r  o f  O( t  -N) as  t + ~ f o r  any N > O. An a n a l o g o u s  e s t i m a t e  
is valid for the first integral for o >�9 If 0 < o ~ i, then the first integral has two 
stationary phase points v1, v2, such that ~'(v~,=) = o. The function ~(v) is odd; conse- 
quently, v= = -v~, v1(s) > 0. Let us introduce a new variable of integration ~, instead 
of ~, such that 

~ff - -  ~ 1 ( ?  ) = (i/3); ~ - -  B(~);. ( 3 . 1 )  

For the substitution to be nondegenerate it is necessary that d~(v, o)/dv # O, • for v e 
R ~ 0 < o < i. But 

[;~ - B(cr)]d;/d~,  = cr - -  '21 ' (v) ,  

consequently B(a) = ~2(91(o), o). Substituting the last equality into Eq. (3.1) we find 

B(~) = (3/2)~/8 [e(~1(~)) - ~v1(~) ]~/8. 

It is clear that B(a) ~ C~(O, i) and B(a)(l - 0) -I + 2 I/s as a + 1 - 0. After replacement 
of the variable of integration we obtain 

% ( . ,  t) = ~ ~ ;,~ t~ (;)] + 0 ( t  - ~ )  ( ~  oo), 
- - o o  

[.-~ .~2 _ B (~) [~ (~)] = , 

The function r162 is even. Consequently, near the points r = +_B1/2(a) which yield 
the main contribution to the asymptotic N0(x, t) as t + ~, it can be represented in the 
form 

;;I [~ (;)] = ~ a.i (~) (~ - B (o)/. 

Then j= 0 

oo 

0 

(% (o1 ---- 2*I 'B I/" (o'1] O" ( ' I  (cOl I - ' l ~ )  �9 
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Finally, we find 

1 X �9  o(x ( 3 . 2 )  

as t + ~, 0 < x/t ~ 1 [Ai(z) is the Airy integral]. For x/t = i we have B = 0, a0 (I) = 
2 ~/~. In contrast to Eq. (1.3) obtained by the stationary phase method, the amplitude 
function a0(x/t) in Eq. (3.2) is bounded for x/t e [0, I]. 

For o e I we introduce a new variable k in place of v, such that 

(l/3)k a q- D(a)k  = v(~ - -  f~(v) .  

If D(o) > 0 for o > 1 and D(o) + 0 as o + i + 0, then the passage from v over to k is non- 
degenerate. Replacement of the variable of integration yields 

i k 2 + D (o) e--~(kU~+W(o)D dk t F Iv (k)]~ ' [~ (k)] i + 

Here the phase function has a saddle point for k = • Continuing the integrand 
into the complex plane k e C and expanding the amplitude function into a series in the 
neighborhood of the point k = • we obtain 

x (t2/~D ... 

as  t + ~,  x / t  ~ 1. The f u n c t i o n  D(o)  i s  s e l e c t e d  s u c h  t h a t  t h e  e x p r e s s i o n  k ~ [ v ( k ) ]  con -  
t i n u e d  i n t o  t h e  complex  p l a n e  would be bounded and n o t  e q u a l  t o  z e r o  in  t h e  n e i g h b o r h o o d  
o f  t h e  p o l e s  k = •  We h e n c e  f i n d  

D(o) = ( a / 2 ) ~ ( 1 / - ~  tg m -  ~mp/", 

where m = m(g) is the least positive solution of the equation 

We have 

which yields 

(dIds) ] / ' ~ [ s = m ( c )  -~ o. 

k 2 q- D (0) 
a 0 (0) = lira 

h-~wl/2(o) 0 -- 9'1 Iv (k)] ' 

ao(O) ---- 2~/2D~/4( a) l((d~/ds~) " ~  s) Is=m(~ 

Formulas (3.2) and (3.3) determine the principle term of the uniformly suitable asymp- 
totic n0(x, t) for large times. For t ~ e -I it is necessary to take account of the rough 
nature of the bottom, as is realized exactly as in [I] for the Whitham method. A system 
of equations agreeing with Eq. (1.5), but with the distinction that 

El(K, a) = E ~ ,  ~) + ( i /60)[qS(qh)  - -  2Q2(a)] 

s h o u l d  be u t i l i z e d  i n s t e a d  o f  E(~ ,  ~ ) ,  i s  u s e d  h e r e  t o  c o n s t r u c t  t h e  s h a p e  0 f  t h e  f r e e  bound-  
a r y  behind the bow wave front. The asymptotic ~(x, t) as ~ ~ 0 has the form 

~@, t) = C0(K, a) ch (qh) Ai [--((3/2)0) ~/s] + .... ( 3 . 4 )  

The i n i t i a l  c o n d i t i o n s  f o r  t h e  a p p r o p r i a t e  s y s t e m  o f  s i x  f i r s t - o r d e r  o r d i n a r y  d i f f e r e n t i a l  
e q u a t i o n s  a r e  c o n s e r v e d  by t h e  p r e v i o u s  ( 1 . 5 )  w i t h  t h e  e x c e p t i o n  o f  t h e  f o l l o w i n g  

0 = ~ [ 2 ~ ( ~ )  - -  aS(~) l ,  
C0 = 3 li6 I~(a) - ~e'(~)11/6 oh a F ( a ) f  [2(~Q(~)) 1f31 f l ' '  (~)I ~1~ 1, 

which  i s  due t o  t h e  n e c e s s i t y  o f  m a t c h i n g  t h e  s o l u t i o n  w i t h  t h e  a s y m p t o t i c  ( 3 . 2 )  f o r  X = 
X 0 (X 0 ~ i). To construct the free surface shape ahead of the bow wave front it is neces- 
sary to solve an analogous system of equations [i] in which the hyperbolic functions are 
replaced by related trigonometric functions 

d~ ~CO 
d--~ cos2qh ' dO 2% ~ (a) - -  qP  (qh), ~-f = - -  P (qh), ~-f E2 (K, a) C o, 
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dqu -- q~ [2q~h' + qh" xa + 2qh' tg qh (qah + qh'xa)], 
d~ --  cos 2 qh 

~d~ = --  p '  (qh) (qah + qh'xa), X (a) = ~ a tg a,  P (~). = tg ~ ~ cos~ ~, 

P I =  p(qh) htgqh,  E2=qx[P iP(qh ) - -h ] - -qh '  + ~ P ~ +  ~[qP(qh)--2X~(a)]. ( 3 . 5 )  
4Z 2 (a) cos qh 

I n i t i a l  c o n d i t i o n s  t h a t  p e r m i t  c o n t i n u o u s  m a t c h i n g  o f  t h e  s o l u t i o n  o f  t h e  s y s t e m  t o  t h e  
a s y m p t o t i c  ( 3 . 3 )  s h o u l d  be  a p p e n d e d  t o  t h i s  s y s t e m  

q = a,  0 = Z o [2Z 2 (a) - -  aP (a)], x = - -  ~o P (a), 

31/~ 1 2 (~) --  ~ '  (~) 11/~ Fx (a), 
Co = 2 [XoZ (~)]l/a [ Z. (~) [1/2 

I t  i s  a s s u m e d  t h a t  fix)e lxl/  i s  a f u n c t i o n  i n t e g r a b l e  i n  R 1. A f t e r  s o l v i n g  t h e  s y s t e m  
( 3 . 5 )  t h e  f u n c t i o n  n ( x ,  t )  a h e a d  o f  t h e  f r o n t  i s  e v a l u a t e d  f r o m  t h e  f o r m u l a  

n ( x ,  t) = C0(h, a)  cos qh Ai [((3/2)0)z/a] A- ... ( 3 . 6 )  

The  p r i n c i p l e  t e r m s  o f  t h e  a s y m p t o t i c s  ( 3 . 4 )  and  ( 3 . 6 )  a g r e e  on t h e  bow wave  f r o n t  
and  e q u a l  

22/3hl/a(x ) (x)Ai ~ (N(x)- - t )  + . . . .  ( 3 . 7 )  

where M(x) = S hl/2(~)d~' N(x) = h-i/2(~)d~. 
0 0 

4. Comparing the different approximation with the exact solution for the case of a 
level bottom is represented in Fig. 2 (x = 3). The initial elevation of the free boundary 
is taken in the form (2.2) for d = 3. The solid curve shows the exact solution obtained 
as a result of numerical integration by Eq. (1.2), curves 1-3 are constructed from Eqs. 
(1.3), (3.2), and (3.3), respectively. It is seen that the asymptotics (3.2) and (3.3) 
describe the behavior of the free boundary well even for moderate times while Eq. (1.3) is 
applicable after the point of observation has passed the bow wave. The Whitham approxima- 
tion (3.7) that corresponds to the long-wave approximation is denoted by the dashed line. 
A comparison with the exact solution shows that at distances from the initial perturbation 
that are comparable to the pond depth the long-wave approximation yields a qualitatively 
true pattern of the free boundary for the bow wave and is not applicable after the point 
of observation has passed it. 

The influence of bottom relief on the free surface shape is shown in Figs. 3 and 4. 
The relationships (3.4) and (3.6) are used, and the bottom shape is indicated in the figures. 
For the localized bottom roughness described by the equation h(x) = 1 - b exp [-~(x - x0) 2] 
for ~ = 0.i, x 0 = 7, b = • (curves 1 and 2), the free surface shape at the time t = 12 
is indicated in Fig. 3. The front boundary in these two cases corresponds to xf = 11.0, 
12.73. The exact solution for the level bottom is displayed by the solid line, and the 
solution for an infinite fluid by dashes. The influence of bottom roughness appears mainly 
in the neighborhood of the bow wave. A hillock (b = 0.3) on the bottom here results in 
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retardation of this wave and a certain magnification of its amplitude. Passing over a 
trough (b = -0.3) the bow wave accelerates and its amplitude diminishes as compared with 
the case of a level bottom. It is interesting to note that the second hump of the inflow- 
ing wave is described sufficiently well by the solution of the problem for a level bottom 
even if it is directly above an obstacle but is not described by the solution of the cor- 
responding problem for an infinite fluid. This indicates that the influence of bottom 
roughness on the free boundary shape appears not directly above an obstacle but is shifted 
in the direction of perturbation propagation. 

The free surface shape for a bottom profile described by the'function h(x) = 1 - b • 
[i +tanh ~(x-x0)]/2 at the timet = 12 is represented in Fig. 4. Here x 0 = 7, ~ = 0.33, 
b = • -i (curve i-3), and the front boundaries are xf = 11.21, 12.75, 14.46. All the 
assertions referring to the localized roughness are valid even in the case of a smooth pas- 
sage from one depth to another (see Fig. 4). The steepness of the wave will be smaller 
during emergence of the bow wave in the large depth domain, the greater the drop in depth. 
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SOLUTION OFT HE PROBLEM OF IDEAL FLUID FLOW IN THE NEIGHBORHOOD 

OF BODY AND WING APICES 

A. V. Voevodin and G. G. Sudakov UDC 532.5 

For a uniformly accurate description of ideal fluid flow around three-dimensional 
bodies, the nature of its asymptotic behavior must be known in the neighborhood of the 
singular points that are the body and wing apices, for example. It is known that in the 
neighborhood of sharp apices the flow potential depends as a power-law on the distance to 
the apex. 

An algorithm is proposed in this paper to solve eigenvalue problems by using the method 
of ~'vortex frames" and a panel method that permit finding the eigenvalues of the exponent 
and eigenfunctions of the problem. Examples are presented of application of the proposed 
method for problems of the flow around delta wing apices and apices of a body in the form 
of a circular cone that have an exact solution (the problems reduce to solving an ordinary 
differential equation). A comparison is given between the results of computations and the 
exact solutions. 

i. Let us examine the problem of irrotational ideal fluid flow around a body apex or 
a wing angular point with half-angle 8 at the apex. Let us introduce a Cartesian rectangu- 
lar x, y, z coordinate system with x axis directed along the line of body (wing) sym~metry, 
z axis in the plane of the wing (in the case of a cone, arbitrarily but perpendicular to 
the x axis), and y axis perpendicular to the x and z axes. The potential of the flow being 
investigated should satisfy the three-dimensional Laplace equation with boundary conditions 
of nonpenetration on the body (wing) surface. By virtue of the boundary conditions the 
problem is self-similar and, following [1-3], we seek its solution in the form 

= c x ~ / x ,  z/x, o) ( 1 . 1 )  

Zhukovskii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
3, pp. 60"65, May-June, 1990. Original article submitted April 7, 1988; revision submitted 
January 31, 1989. 

0021-8944/90/3103-0395512.50 �9 1991 Plenum Publishing Corporation 395 


